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LETTER TO THE EDITOR 

A modified Holstein-Primakoff approach to frustrated 
quantum spin systems 

C J Gazza, A E Trumper and H A  Ceccatto 
Instituto de Fisica Rosario, CONICET/Universidad Nacional de Rosario, Bv. 27 de 
Febrero210Bis, ZWORosario, Argentina 

Received 30 April 1991 

Abstract. A simple modification of conventional spin-wave theory based on the Holstein- 
Primakoff transformationis investigated. On the basis of acomparison with exact results on 
finitelatticesit issbown togivesubstantiallyimproved results.especially for highly frustrated 
systems. 

The spin-wave approximation [l] is one of the oldest and simplest approaches to the 
physics of quantum spin systems. Recently several papers [2-51 have dealt with a 
modification of this approximation that makes it surprisingly good when compared with 
other methods and exact results. As formulated by Takahashi [2], the strategy is to 
supplement the usual spin-wave theory (SWT) by adding the constraint that the density 
of spin waves is equal to the quantum spin number S. This restriction takes into account 
as an average the so-called kinematical interaction: the number of bosons per site 
cannot exceed 2s. Stated differently, it enforces the constraint of zero total (staggered) 
magnetization for (anti-) ferromagnetic spin systems on finite lattices [4]. 

One problem with Takahashi's theory is that it is not rotationally invariant: the 
constraint has to be imposed by means of a Lagrange multiplier, which is equivalent 
to adding an external field to the spin system. Consequently, rotationally invariant 
quantitiesmust be averagedonanad hocfashion toget meaningful results. On theother 
hand, ignoring kinematical interactions is not the only approximation one makes in 
conventional SWT. For instance, when using Holstein-Primakoff transformation [6],. 
square root operators (1 - U ' U / Z S ) ~ ~ ~  must be expanded keeping only the first terms in 
the expansion in order to make the resulting Hamiltonian manageable. Then, as pointed 
out by Arovas and Auerbach [7], the excellent agreement with the Bethe ansntz and 
numerical results obtained in [2-51 is astonishing, since the constraint guarantees that 
(atu/2S) = 3, which hardly justifies the truncation of the aforementioned expansion. 

In the present work we focus on this last point. Instead of adding a constraint by 
hand we will try to improve on conventional SWT by expanding the square root in terms 
of the shifted operator uta/= - CY. The shift CY will be ultimately determined by the self- 
consistent condition (Y = (ata/2S). For the sake of comparison we apply this procedure 
to the general quantum antiferromagnet considered in [SI: 

which includes a frustrating next-nearest-neighbour coupling J ,  besides the standard 
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nearest-neighbour (isotropic) Heisenberg interactionJ, > 0. The model is defined on a 
square lattice of Nsites, with i ,  i’ belonging to sublattice A and j,f to sublattice B. We 
will restrict ourselves to the study of the N&-ordered ground state of Hamiltonian ( l ) ,  
which is known [8] to exist at least classically forJ2/Jl < 0.5. By takingJ2 = 0 we can 
readily compare our results with those in [3] and [4]. 

We stress here two important points. First, our procedure leads to a quadratic 
Hamiltonian and correction (non-harmonic) terms different from those in Takahashi’s 
theory. Secondly, very much like in the constrained theory, the self-consistent condition 
introduces a gap in the spin-wave excitation spectrum. This allows us to apply the 
approximation directly to finite lattices in order to compare the results with those 
obtained from exact diagonalization of small systems (naive application of conventional 
SWI on finite lattices gives divergent results). As shown below, for J 2 / J 1  = 0 our results 
are slightly worse than those in 15-51 but they improve substantially on these for higher 
levelsoffrustration, where the constrainedtheorystronglyoverestimatesthe disorderirig 
effect. 

By means of antiferromagnetic Holstein-Primakoff transformations [6] on sub- 
lattices A and E: 

s,? = (~s)”*(I - ata,/2S)’I2ai s; = (s:)’ Sf = S - a;a; 

S,! = (2S)”*bf(l - b:b;/2S)‘!’ s; = (ST)’ S; = -S + btb; 

and the further expansion of the square roots to first order in a:a,/2S - a, a general 
biquadraticHamiltonian in Bose operatorsisobtained. Keepingonly the harmonic part, 
Bogoliubov diagnonalkation gives 

H‘ = wx(ntnk + pip t )  + constant (2) 
k 

where 
2 2 1/2 wk = J l S z [ ( l  - ff)/qXl(l - ? k Y k )  

and yk = $(cos k, + cos ky). This dispersion relation differs from the conventional spin- 
wave dispersion essentially due to the presence of the factor 

q k  = (1 - n)/{l+ ( J J JdK1  - 4rk - 111 (r, = cos k, cos k y )  

which introduces a gap for (Y > 0. The actual value of a is determined by the self- 
consistent equation 

where (a), means the expectation value of A taken in the ground state of Hamiltonian 

Further improvement of the approximation can be achieved by including terms 
quartic in Bose operators. In this way, we found for the ground-state energy and 
correlation functions 

(2). 

(H)o  = -(zNJI/Z)(S‘ + g(S))’ + (zNJZ/2)(S‘ + f ( S ’ ) ) ’  

(s,sih = (s‘ + g(r2 - q))z 
(S iS , , )o  = (S,S,.) = (S‘ + f ( r ‘  - r))’ - is,,, 

(44 

(4b) 

(44  
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where S‘ = S(l - 2a) and 6, 6’ are vectors to nearest and next-nearest neighbours of a 
given site. We have made the definitions 

Figure 1. Correlation functions (ooaR.) = #SOS,) 
withR= ( n ~ ~ + n ~ ~ ) ~ ( n ~ , n ~ ) f o r d i f f e r e n t l a t -  
tice sizes: (0) N = 10; (b )  N = 16; (c) N = 26. 
Points are exact values; dashed lines are con- 

From (3) and (4c), the proper normalization (S’), = S(S + 1) can be easily checked. 
Numerical evaluation of (46) and (4c) for lattices of different sizes gives the results 

shown in figure 1. As can be seen, for high degrees of frustration our approach gives 
better results than those from the constrained s m  IS]. This is particularly so for the 
largest lattice for which exact numerical results are available (N = 26). On the other 
hand, and contrary to Takahashi’s theory which overestimates the disordering effect 
due to frustration, our approximation tends to underestimate this effect with increasing 
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Figure 2. Rotationally averaged structure factor 
per site for lattice sizes N = 10.16.26. Points are 
exact values; dashed lines are mnsuained spin- 
wave results from [SI; solid lines are results from 
the present work. 

, 

Figure 3. Magnetization per site for the infinite 
lattice. The dashed line is the conventional spin- 
wave result from [SI; the solid line is the result 
from the present work. 

lattice size. Both conclusions are even more apparent from the behaviour of the 
(rotationally averaged) structure factor 

S(n, n) = & ( - l ) R ( S O S R ) L l  
R 

which is plotted in figure 2.  The predicted values are better than those of [SI and, other 
than for the smallest lattice ( N  = lo), slightly higher than the exact ones. 

It is also interesting to consider the behaviour of the magnetization as a function 
of J z / J ,  in the thermodynamic limit. Either from S(n, n) = Nmz + O ( v N )  or the 
Ir' - rl + -limit of (4b) and (4c) we obtain 

m = S ( l - Z a )  ( N -  a). (5)  

Notice that this is the result one would have obtained from direct calculation of {F) 
and further use of the consistency equation (3). Figure 3 shows a plot of m as given by 
(3)-(5). together with the corresponding result as predicted by the constrained theory 
(51 (which coincides with the prediction of the conventional SWT [SI). Although our 
approximation certainly overestimates the stability of the Nkel order, numerical results 
onfinitelattices[9]suggest that thisorderisin fact destroyedforJL/J1 around0.6, which 
is not too far from the value where m goes to zero in figure 3. In any case, from the 
discussion of the structure factor behaviour both curves in this figure can be considered 
upper and lower bounds to the actual magnetization. 

In conclusion, a simple modification of standard SWT based on Holstein-Primakoff 
transformation produces fairly good results for frustrated spin systems. Moreover, for 
high degrees of frustration it gives results considerably better than those obtained from 
a similar approximation [2-5] recently considered in the literature. 
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